Princeton Tutoring is not affiliated with The Princeton Review

Sample Recaps

Math - Trigonometry

**Student:** B

**Tutor:** Matt

**Date:** 5/16

**Time Tutored:** 3:30-4:30

**Additional Billable Time:** N/A

**Previous Quiz/Test Scores:** N/A

**Next Scheduled Session:** Sometime next week

**Materials Covered:**

Yesterday's session focused on polar coordinates and polar graphs, which is the material that had been covered in class. B seems to understand the basic principle of polar coordinates, which is that coordinates are given as a distance from the origin (r = sqrt(x^2 + y^2)) and the counter-clockwise angle the line drawn to that point from the origin makes with the positive x-axis (tan(theta) = y/x). Additionally, x = r*cos(theta) and y = r*sin(theta) (where x and y are rectangular coordinates). Everything comes from how these coordinates relate to rectangular coordinates. Converting between the two simply means substituting the relations for x and y or r and theta.

Visualizing a graph from a polar equation is a bit more difficult, since it is not immediately obvious what a given relationship between r and theta means. There are a few basic rules to remember, but I don't think that most of them had been covered quite yet. The one thing that was covered is that a graph of the form r = a*sin(n*theta) or r = a*cos(n*theta) will give a rose-like graph with n petals if n is odd and 2n if n is even. This difference arises from the symmetry of trig functions about the point or the vertical line at x = pi. When the function has line symmetry, it has the same value for theta and theta + pi, and since these angles are opposite of each other, this makes the function draw a mirror image of itself in polar graphs; while if it has point symmetry, it has opposite values for theta and theta + pi, which makes the function double back on itself since (-r, theta + pi) = (r, theta). There are a number of other forms of graphs, but they did not appear to have been covered in the textbook sections B highlighted.

**Additional Comments:**

The important thing is to remember how to convert between polar and rectangular coordinates. He seems to get this in principle, but sometimes gets a bit tripped up in the algebraic manipulation, which comes with some practice. As for polar graphs, most of it is memorizing a few rules and, if all else fails, a graphing calculator will do the trick. I doubt he'll have to graph anything complicated by hand, so that shouldn't be a major issue. Also, interestingly, as I told him - polar coordinates are very similar to complex numbers since r and theta are defined in virtually the same way for both, if it helps to think in that way.

We have uncommon access to the best and brightest in the world. Our tutors are hand-picked and have a genuine passion for teaching and mentoring. View our tutor profiles and see for yourself.

Learn more.We approach tutoring differently. Through our company philosophy, highly researched programs, and customized matching process, we are able to more effectively deliver results.

We have an impressive history of proven success and a guarantee unlike any other in the business: If you're unsatisfied with any session, let us know and we'll make it right.

Learn more.-
"First of all, I want to say that Gabriela is awesome! A is doing so well in Algebra 2. What matters more is that he understands it."

Parent of 9th grader, Montgomery High School -
"P is going to Dartmouth. Thank you for providing us with a great tutor."

Parent of 11th grader, The Lawrenceville School -
"Dear Jessica, We are truly grateful for all of your work with our son. You have given him confidence and enabled him to enjoy the results of his hard work. You are a real treasure."

Parent of 7th grader, Chapin School -
"Hi Peter - Thanks for the great recap, as usual. Our son so enjoys working with you, and he gets so much more out of the material, and genuine excitement about the subject thanks to your sessions. Not to mention the better grades! :) A thousand thanks…"

Parent of 11th grader, Princeton High School -
"Good news! My daughter went from having a C/F to a high B (one point from an A) in her latest test and the credit goes to Sweta. Just wanted to share with you. Thank you."

Parent of 11th grader, West Windsor Plainsboro North